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Abstract. In a previous paper, we considered Weyl quantization of functions of the angle in 
phase space, in particular a phase operator A(q) and the quantized exponentias A(e"Q). In this 
paper we consider the first and second moments of these operators with respect to the hannonic 
oscillator Hermite states h. and the coherent states 9.. Taking asymptoiic limits we find, for 
e m p l e .  that 

varIA(co): h,J = I.' + 0 (T) (E -, 00) 3 
for the variance of A@) in the Hermite states. For the second moment of the phase operator in 
the coherent states we obtain the asymptotic limit 

llIA(r) - 01% 11* = 0 (h) 
as loll tends to infinity, amongst other results. 

1. Introduction 

The search for a sensible quantization of phase is compelling both as a fundamental problem 
in quantum mechanics and as an application of that theory to the physics of cavity fields 
[1,21]. We are aware of three distinct current theories of phase quantization. The first is 
that of Garrison and Wong [4], later also considered by Popov and Yarunin [5],  Galindo [6]. 
Grabowski [7], and others. The second is that of Barnett and Pegg and their collaborators 
[IS-171. The third is the Wigner-Weyl quantization, a@) ,  of phase angle given by us in 
[1,2], and independently considered by Royer [3]. 

We find that the physically interesting problem of the quantization of phase and its 
functions can be mathematically delicate: phase quantization bears the quantum hallmark. 
In this paper, as a further contribution to the subject, we present some.rigorous results about 
A(p) and the quantizations 4(eii9 of the complex exponentials of the phase. The burden 
of a subsequent paper [19] is then to extend the analysis to the question of the measurement 
of these quantites, allowing a comparison of important aspects of the three theories of phase. 

In [l] and [Z] we expressed A(p) in terms of its matrix coefficients with respect to the 
standard Hermite basis for Lz(R) and in [2] we also expressed it in terms of an integral 
kernel. Royer [3] has considered the quantization of p in a number of quantization orderings 
other than that of Weyl. 

In some sense 4 (p )  can be seen as a deformation of the Garrison and Wong operator 
[4], which we shall denote by X .  Garrison and Wong obtained X as the angle function 
on the Hardy space H2(T) on the unit circle. It turns out that X is a Toeplitz operator, 
and so we shall refer to it as the Toeplitz phase operator hereafter. It can also be obtained 
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by attempting to achieve canonicity with the number operator by doubling up the Hilbert 
space, as was done by Rocca and Sirugue [SI, Uvy-Leblond 191, Newton [lo], Ban [ll], 
and others. The technique is equivalent to the Naimark extension theory of dilations and 
compressions, and when the compression hack to the original Hilbert space is determined- 
as is required by the precepts of quantum mechanics-the operator X results. The extension 
method, then, results in nothing new. 

Garrison and Wong [4] considered X and the number operator as acting on a special 
domain in Hardy space on which they are canonical. Unfortunately, the special domain 
is not invariant under any of the other basic operators of quantum mechanics, so we can 
say that the canonicity is incompatible with the no-go theorem which says that in quantum 
mechanics no phase operator can be canonically conjugate to the number operator [12,13]. 

It is our contention that since X is not the Weyl quantization of a function of the angle in 
phase space [Z], our operator A@) has a more immediate physical significance for phase, 
and so its properties merit further study. In addition, we do not believe that the angle 
coordinate in Hardy space directly corresponds to the angle inherent in quantum phase, at 
least in a direct way. 

Certain fairly detailed information conceming the operator X is available. For example, 
a complete spectral representation of X is given in Garrison and Wong [4]. But there are 
gaps in what we know about X. For example, an expression for the asymptotic form of the 
variance of X in the coherent state is not known, although Garrison and Wong present 
an outline proof indicating that the variance tends to zero as tends to infinity. Detailed 
information along these lines has not been available for A@) until now, and it is the aim 
of this paper to remedy this. 

A serious problem in this field is that it is not clear in operational terms exactly what 
physical observable a given operator represents. Conversely, it is not clear what operator 
will represent those effects which have been measured to date. In particular, it seems not 
to be known whether any of the experiments have measured some quantized angle directly, 
or whether they have measured some function of it, such as its cosine, sine or complex 
exponential. From a quantum mechanical point of view this makes a significant difference. 
For instance, the quantization A@) of the phase angle and the quantization A(e*'V) are not 
closely related. In fact, we know that 

A(e*iv) + e*iA(v), (1.1) 

Indeed, the operators A(e*'V) are not unitary 1'21, but the operators e*'*(V) are. 

the Weyl quantization of the phase space function 
Expressing the difference between them in terms of phase space functions, A(e*p) is 

whereas ea*(@ is the Weyl quantization of the phase space function 

f p * f p * . . . * ( o  (1.B) 2:"" 
n !  - 

n times n=O 

where f * g indicates the Moyal product, which is the transferrence of the operator product 
on Hilbert space to phase space [14]. 

Evidently, it is of cardinal importance to relate the theoretical and experimental results 
in this field. As part of this process, i t~is  necessary to have reliable mathematical analysis 
for all the proposed phase operators and the basic trigonometric functions of them. Since 
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the mathematically predicted results are, typically, quite distinct for the different proposals, 
this analysis should enable us to determine what observables the experiments are actually 
measuring. 

In a different direction, Bamett, Pegg, Vaccaro and their collaborators, e.g. [15-171 have 
proposed certain objects as ‘a phase operator’ and various ‘states of definite phase’. They 
believe that they are proposing a generalization of quantum theory [18], but this cannot be 
accepted until and unless they prove that their formalism subsumes all the phenomena that 
quantum mechanics is able to describe. In a companion paper [19] we shall consider their 
formalism at length. 

In this paper, we shall present various results concerning the expectation and variance 
of the operators A@) and A(e*iq) when acting on eigenstates of the harmonic oscillator 
and on coherent states. In particular, we have found their asymptotic behaviour for~large 
index n of the Hermite functions h,, and for large values la[ of the coherent state parameter. 
Obtaining these results turns out to be a matter of some surprising technical complexity, 
which seems to be a feature of careful angular quantization. 

Angular quantization entails a choice of polar angle in the phase plane. This requires a 
choice of fiducial, or reference, angle 6’0, a choice that must also be made in any work on 
the phase operator. For purposes of comparison, we note that our phase plane angle v, is 
the complement of the angle used in some other papers on this subject, and our reference 
angle is taken to be - x ,  which corresponds to using the principal branch of the arctangent 
function to define the ingle in phase space. The results obtained from different choices of 
60 are easily related to one another [1,2]. 

This and the succeeding paper on approximation theory [19] continties our programme 
of~examining the properties of a phase operator which is consistent with quantum mechanics, 
arising as it does from Weyl quantization of the angle in phase space. 

At this point we recall the precise form of Wigner-Weyl quantization as we mean it 
and shall use it below. We write I l  for Rz interpreted as phase space, and suppose that 
T E S(n)’ is a tempered distribution. In order to be able to consider quantization of such 
singular objects we must utilize the integral transform method. That is, we first define the 
Wigner transform as the map B : S(Rz) -+ S( n) given by 

The wavefunctions, f and g, are restricted to be test functions in Schwartz space at this 
point, where we adopt the convention ii =.1. 

Since B(g @ f) is a test function in S(n), any tempered distribution can safely act on 
it, and so the equation 

is well defined, and serves to define the quantization A[T] as a continuous linear map from 

The purpose of this formulation is to use the fact that we can safely restrict f and g 
to be test functions-S(R) is dense in Lz(R)-and use the freedom gained to balance the 
singular nature of T .  The price paid, aside from the indirect nature of the expressions, is 
that A[T] is not a Hilbert space operator unless T is regular enough. 

Unfortunately we know of no useful general regularity condition which will guarantee 
this, but in most cases of physical interest, more or less practicable and effective conditions 
are known. Interestingly, quantization of angle functions sits more or less at the critical 
point, which is part of the reasonthis subject is technically difficult. 

s ( R j  into s(R)’. 



6782 M A  Hennings et al 

The bilinear pairing used in distrib'ution~theory does not involve the complex conjugation 
which occurs in the inner product on L2@). Our convention is to put the conjugation on 
the first element, and so when a distribution S happens to be an element of L2(R), we can 
write 

S(f) = (f, s) 

[A(T)fl(g) = A W f )  g E S(W, f E L2(R). (1.5) 

s E L2Q), .? E S@). 
Then if the distribution T is regular enough so that its quantization A(T) is no worse than 
an unbounded operator from SQ) to L2(R), we can write 

In particular (with the cut at 9, 5 -z), the bounded phase operator A@) is obtained by 
quantizing the phase angle 

Z a r c t a n [ ( m  - p)/q] if q # o 
d p , q ) =  0 if q = 0 and p > 0 Q.6) 

- ' if q = O  and p c 0 
in the interval [-x, x ) .  For further details along these lines, see [Z]. 

In section 2 of this paper we re-express the action of A@) on the harmonic oscillator 
states h.. This is needed in order to obtain rigorous results, in section 3, for the standard 
deviation of A@) with respect to these states (see equation (3.10)). Qualitatively,'the 
variance straddles the value n2/3, alternately for even and odd n,  and converges to this 
value as n tends to infinity (see theorem 3.1). 

Section 4 calls attention to certain polynomials qn(q) which are a by-product of 
this analysis; they appear to be a deformation of the Hermite polynomials, and satisfy 
inhomogeneous recurrence relations. 

In section 5 we consider the means and standard deviations of the operators A(e*'P) 
with respect to coherent states 0,. We obtain i n  exact expression for means in terms 
of Bessel functions (equation (5.9)), and so can find its asymptotic form for large loll 
(equation (5.10)). We then prove that the variance of A(e+q) behaves like l/(Z\a\') for 
large la\ (equation (5.13)). 

In section 6 we look at the mean and variance of A@) for the states 0,. For large 
IaI, the variance of A(9) goes like lab-'. This is a subtle result, for if the infinite series 
representing the variance, obtained from the Hermite function expansion for were 
truncated ar any term, the (truncated) variance would have an la\-* asymptotic leading 
term. A by-product of the analysis in section 6 is a sharpening of our knowledge of the 
spectrum of A@), equation (6.32): its spectrum contains the continuous interval [-n, n]. 
This result is consistent with our belief, based partly on earlier computer work [2], that the 
spectrum of A ( q )  is absolutely continuous and equal to [-x. x ] .  

2. Preliminary results 

Starting from the kernel expression for A($?) we shall obtain an expression for A@) in this 
section, as the difference of two unbounded operators. and use the result to determine a 
expression for A(fp)h,. This will enable us to determine various asymptotic expressions in 
later sections. 

As was shown in [Z], the operator A(p) has the integral kernel expression 
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where 

Applying some elementary manipulations to this definition, we find that 

for g E S(R) and q > 0. 
If we define the argument reversal operator on S(R), 

'R&) = g(-q) 

Z ' R g = R Z g  , gES(P) .  

4 E R, g E m4 
then 2 and 'R commute: 

Applying this equality to OUT expression for 2 g  yields a~ analogous expression valid for 
il < 0. 

Fundamental to many of our calculations will be the coherent states. For any complex 
number 01, we define the unit vector 

where (h, : n > 01 is, as usual, the standard orthonormal basis for L2(R), consisting of 
eigenstates of the harmonic oscillator. As is very well known, 4# is a translated Gaussian, 
with values 

(2.7) 

Note that our definition of coherent states differs slightly from that found elsewhere; 
what we have described as being parametrized by 01 would be described elsewhere as being 
parametrized by i6/&. The reasons for this change partly relate to the complementary 
value of our angle q~ to the choice found elsewhere, and partly to calculational convenience. 

in their own right, but for the present 
we shall restrict ourselves to the cases where 01 is purely imaginary, and write 

1 
Qm(q) = , a e x p [ $ ( 2  - 1011~)1exp[-$q~ + i6q1. 

Later on we shall be concemed with the states 

so that YB is e-$#' times the standard generating function, Gg, for the [h, : n > 0). Thus 

* g ( q )  = -exp[-$(q -BY] (2.9) 
1 

for any @ E R. Direct calculation shows us that 

12VpKq) = *&)G(B, 4) > 0 

where 
=l 

G(B,q) =i ( e - e -fz-?U1+flr)t-' dt - 2 -B)t]t-' dt. (2.10) 
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Our first aim is to obtain information about the function G. To begin with, if we set 
/3 = 0 and differentiate with respect to q we obtain the equation 

so that 

G(0, q )  = 2(logq f k )  q P 0 

for some constant k .  It will turn out that this log term represents a singular part of the 
action of A(Q). 

We may substitute this into the expression for Z acting on ha, obtaining 

[zhoi(q) = ~ Z W O ~ ( ~ )  = WO, q)qoIro(q) = 2(iogq~+kwo(q) 4 t 0. 

Since Rho = ho, it follows that 

Eho l (q )  = 2(log(lql) +k)ho(q) 9 # 0. 

If we now substitute this into A(9)ho, the only unknownis the constant k: 

[A(rp)h~l(q) = [:sign@) - i(log(lql) + k ) ] h o ( d  4 # 0. 

Taking the inner product of this expression with ho now enables us to evaluate k; since we 
know that 

(hop A((o)ho) = 0 

from [l], we have 

so that 

k == log 2 + ; y 

where y is the Euler-Mascheroni constant. 
Thus we have shown that 

G(O,q) = 2log(2q) + Y 4 > 0 

and 

(2.11) 

[A(v)hol(q) = 1:. sign(q) - ilog(2lql) - ifylho(q) 

Moving on to consider the case for general p ,  direct calculation shows that 

q # 0 (2.12) 

which is the first of the results we shall use in subsequent sections. 
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and so 

( 2 . 1 3 ~ )  

where 
m 

nn(q) = eq2 l e-"[(q + t)" - (q'- t)"] dt (2.13b) 

for n >, 0. 
We can obtain recurrence relations for the functions n;, from the integral representation: 

4Cq) = 2qnn(q) + nra-l (4) - @)" n > I  (2.14~) 

nn(q) = qnn-l(q) + + - h - z ( q )  + ?( 1 2 q )"-1 n > 2  (2.14b) 

( 2 . 1 4 ~ )  

ro(q)  EO. (2.146) 

From this it is straightforward to deduce that rr.(q) is a polynomial of degree n - 1 
with parity (-1Y-l and leading coefficient 2"-' for any n E N. Indeed, 

This expression enables us to rewrite equation (2.1) for g = qfi as follows: 

( 2 . 1 5 ~ )  

(2.15b) 

(2.16) 

(2.17a) 
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where 

We obtain a similar expression for A(p) acting on h, by substituting thii into 

For by equating coefficients of equal powers of p we obtain 

(2.17b) 

(2.18) 

(2.194 

from which we deduce that for n > 0, 

(2.19b) [A(rp)h,l(q) = [;sign(q) - i M 2 l q l )  - y hn(q) + ?kq)e-14 . 

Here qn is a certain polynomial in q of degree n and parity (-ly, of which more will be 
said in section 4. Thus we can find constants Xm," for 0 < m < n such that 

[A.(m)h,Ih) = [ 5 sign(q) - ilog(2lql) - ZY M q )  + 
where, moreover, Xm,,, = 0 whenever n - m is odd. 

This represents a substantial simplification of the expressions for A(p)h. obtained from 
its matrix elements ([1,2], ibid) or the form implicit in equations (2.1) and (2.2). In the 
next section we shall identify the c o ~ ~ ~ t a n t s  X,,,,", and find that in a certain sense, the major 
part of A@) is the operator 

1 %  i 1  

1 m<n 
X , . A  (2.19~) 

n .  i 
2 C(p) = sign(Q) - ilog(2Q) - - y l .  

We do not yet have a completely closed expression for A@). It is clear that C(p) is 
unbounded, and so we find ourselves in the somewhat unsatisfactoly position of expressing 
the bounded operator A@) as the sum of unbounded operators. Nonetheless, our present 
knowledge is still adequate to perform a number of interesting calculations. 

3. A@) and the harmonic oscillator eigenstates 

We now proceed to calculate the variance of A(p) for each of the harmonic oscillator 
eigenstates h, (n 2 0). It should be noted that the diagonal matrix elements vanish 

(hn, A(a)h,) = 0 n > 0. (3.1) 
Then the variance of A(p) in the pure state represented by h, is 

Calculations for the Toeplitz phase operator yield 
vU[A((o); h.1 = ( h n 2  A(rp)%) - Vb, A(p)htJ2 = I l A ( ~ ) h ~ l l ~ .  

722 O0 1 
kZ 

var[X;h.] =-- - 
k=n+l 
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for its variance in the state h,. As a sequence in n, this monotonically increases to l r 2 /3  as 
n -+ bo, which is consistent with a 'classical' random distribution of phase. The variance 
of A @ )  will not have this form and its convergence will no longer be monotonic, but we 
shall see that its limit as n + bo is also r 2 / 3 .  

Parenthetically, we note that the Barnett and Pegg approach yields 1171 a variance of 
n2/3 for their 'phase operator' Q in all number operator eigenstates h. in the l i t  as s 
tends to infinity. This is not entirely surprising, since 

1 m 2 e,&, where = eo + - s +  1 2 z  (m=O,1, ..., s) (hn, X,Zh,) = - 
S + l m d  

(3 .3~ )  

and 

X, = e.T,m?y.m 
m=O 

with P,,, the projection operator onto the state 

(3.3b) 

(3.3c) 

The limits -+ bo is analogous to, but not the same as, a C&aro mean, and the result 
is that only the terms with large n contribute. The complication is due to the fact that the 
6,y,m depend on s as well as in. 

Continuing the calculations begun in the previous section, define operators A, B E 
L+[S(R), L2@)] by setting 

(3 .4~ )  

(3.4b) 

Here Q is the usual position operator on Lz(R). The set L+[S(R), L(R)] consists of 
all continuous linear maps 8 from S@) to L2@)  which have the following property: they 
have adjoints A* which may be restricted to the domain S(R); and writing A+ for this 
restriction, A+ is also a continuous linear map from S(R) to Lz@).  With this notation, 

l r .  A = - sign(Q) 
2 

B = log(2IQl) + $yr. 

A=A+ and B=B' 
Thus 

A(v)h ,  = (A - i W n  + Xm,& 
m a  

from which it follows that 
2i(hm, Bh.) if m < n 
i (hm,  BhA i f m = n  I Xm." = 

which leads us to the following expression for the matrix elements of A@) with respect to 
the Hermite functions: 

(h,,,, AhAh,) + i(hm, ah.) if m < n 1 (h,,,, Ah.) - i(h,,,, Bh.) if m =- n. 
(hm, A ( c ~ ) h )  = 0 i f m = n  (3.5) 

Since (h,, Ah,) = 0 unless m - n is odd, while (h,,,, ah.) = 0 unless m - n is even, 
we see here a very close relationship between A, B and A@). 
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We can summarize our results so far by showing that 

A(9)hn =Ah, - iPJ3hn n 2 0 (3.6~) 

where P,, = P,' is the bounded operator on L2@) given by the rule 

-h, i f m < n  
P,h, = { 0 i f m = n  

+h, i fm  > n .  
(3.6b) 

Moreover, it is clear that AhAh. and %Bh. are real-valued functions, so we deduce that 

var[A(9); h,l = IIA(9)hnll2 = llAhnl12 + Il%Bh,Il2 
- I  - 4r 2 + IIBh,1I2 - (hn. B h J 2  

(3.7) -I 2 - .,JC + varIB; h.1 

for any n > 0. Thus we must determine the variance of the operator U in the harmonic 
oscillator eigenstates. 

Standard tables of Laplace transforms show us that 

- / d m ( y  + logt)e-(E+Zi')'dt & , S > O  
log(& + 2is) 

E + 2i 
so that 

im & [2Es arctan ($) - 4s' log (-1 h.(s)' ds 

[ y  + log(t)le-efte-f*[l,(2tZ) - 2L;(2r2)1 dt 

for any E > 0. By H, we mean the nth Hermite polynomial, and L, is the nth Laguene 
polynomial. 

Letting E -+ 0+, we deduce that 

log(2s)h,(s)2ds = [ y  + log(t)]te-'*[L,(2t2) - 2L;(2t2)] dt 

so that the diagonal matrix elements of U have the integral representation 

(hn, ah.) = i y  + log(21sl)h.(s)2ds 
R 

d m 

= $ y  +d [ y  + ~ l o g ( ~ ) l ~ [ L ~ ( 2 u ) e - ~ l d u  

= i b  log(u)~[ln(2u)e-U]du - f y  
d m 
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for any n 2 0. Thus 

for I f 1  < 1 ,  so we come to 

(3.8) 

We note that while the off-diagonal matrix elements of B are essentially matrix elements of 
A@), its diagonal elements are unbounded, with 

(hn,  Bh,) = O(logn) n -+ CO. 

Of course this reflects the unbounded nature of B. . 

An argument analogous to the preceding one shows us that 

and hence that 

It follows from this that 

for all < I .  Then 

This gives us the variance of A(q): 

for any n 2 0. In particular, 

and 

(3.9) 

(3.10) 

( 3 . 1 1 ~ )  

(3.116) 

for all n > 0. 
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From these formulae, all the results in the following theorem are easy to establish 
except that conceming the limit to rrz/3. This latter result is established by using Riemann 
integration techniques to express the variance as, e.g., 

(3.12) 

from which the result is immediate. We omit the remainder of the proof. 

Theorem 3.1. 
(a) The sequence (var[A(p);  ha+&^ is monotonically increasing, with limit n2/3. 
(b) The sequence (var[A(p); h&J).>o is monotonically decreasing, with limit x2/3. 
(c) The variance of A ( q )  in the state h, bas the asymptotic order 

The sequence (var[A(q);h.J).>o has an oscillatory character, since its even and 
odd subsequences are monotonically decreasing and increasing, respectively. A similar 
oscillatory behaviour was found for (llA(ei9)h,, 112).>~ in [Z]. We recall that our result there 
was that 

for all n > 0, where 

5 if n is even 
if n is odd. 

(3.13) 

(3.14) 

We noted there, and it is easy to check, that the even subsequence decreases and the odd 
subsequence increases, and the sequence converges to 1. Thus 

lim IlA(q)h.1[* = 4z2 (3.1%) 
n+m 

(3.15b) 

which is consistent with a uniform distribution of phase. 

4. The polynomials &(q) 

In passing, we note a few results which provide an interesting insight into the polynomials 
Jr, (4) obtained in section 2. In some sense they are deformations of the Hermite polynomials 
H,(q), and it would be a matter of some interest to clarify their properties further. 

We recall that for n > 0 and q > 0, 

[ Z h d q )  = l2log(2q) + ylh.(q) +2iJr,(q)e-iqz. (4.1) 

For simplicity we shall work with the corresponding functions 

pn(q) = 2i*n(q)e+z. (4.2) 

To begin our study of these functions we obtain recurrence relations. 
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Proposition 4.1. 
(a) 

(4.3a) 

(b) 

(4.3b) 

for n > 0. 

Proof: Consulting equation (Z.Z), a direct calculation shows that the commutator of Q and 
2 is given by 

for any g E S(P) and q > 0. For g = h, these integrals can be done in closed form, and 
we find that 

for n 2 0 and q > 0. Applying the operator 2 to the identity 
.. 

-hih,+t - ZQh, + a h n - !  = 0 

we obtain (a). 
Again, direct calculation shows that 

eipzg(p) d p  
M - q )  ' 2 (Zg) ' (q)  = - - e-ry 

9 

lmeLdr2{g(p)  - g(-p)\dp+ (Zg')(q) 

for any g E ,S(R) and q > 0. These integrals are the same .a those above, so 

for n > 0 and q >.O. Now apply 2 to the identity 

q'22n+l,hn+1 + 2hh &h,-I = 0' 

yielding (b). 

Thus we see that the functions rp, obey recurrence relations which are essentially 
inhomogenous versions of those satisfied by the Hermite functions h.. This pattern persists, 
for if we introduce the standard creation and annihilation operators 

(4.44 
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we can write 

(4.46) 

so that 

A'h, = J;;Tih,+i Ah. = A h n - ,  (4.4c) 

and so obtain 

(4.5a) 

(4.5b) 

for all n > 0. Calculating the action of A t A  (the number operator) on %, we obtain the 
inhomogeneous differential equation 

(4.6) 
8 f i  rpL(q) + [4n + 1 - q 2 h m  = --h,.,-l(q) 

4 
for example. 

5. Coherent states and the operators A (ei'+') and A (e-jq) 

Let us return now to considering the coherent state for CY E C, and look at the first two 
moments of the operators A(e'V) and A(e-'9) when calculated in these states. 

It should be noted that many of the quantities calculated in relation to laser phase 
experiments, e.g. see [ZO], seem to be calculating expectations and variances of quantities 
such as c o s 9  and sinrp, and not rp directly. Thus it seems that the correct quantum 
mechanical approach might be to calculate the moments for operators such as A(cosrp), 
A(sinp), A(e'P) and A(e-'C) and compare these with the experimental data. We shall have 
to wait for experiments tdat measure A(rp) directly. The operator dA(p) could be added to 
the list, but we do not yet know enough about A(p) to be able to do the calculations. 

Interpreting the experimental results as the measurement of one operator rather than 
another is a delicate matter, particularly in view of the many possible candidates now 
known. The situation is further complicated if the results of Barnett, Pegg and others who 
use their theory is taken into account. That theory is usually presented as defined by the 
moments of a Hermitian phase operator, but on a Hilbert space not unitarily equivalent to 
L2@). However, as we bhow in a subsequent paper [19], their theory can be written in 
terms of t2(iR), but requiring a family of operators, so that, e.g., determining the uncertainty 
in a state requires two operators, as opposed to the one phase operator needed in any of the 
other models. 

It should be noted that'care needs to be taken with all of these calculations. For example, 
it may be necessary to consider an operator such as 

A(cosrp)' + A(sinrp)2. 

However, since 

A(cosrp)* # A(cos2rp) and A(sinrp)* # A(sin2rp) 

~ ( ~ ~ ~ r p ) ~ + A ( s i n ( p ) ' # r .  

it folloWs that 
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Because of this, certain of our results contain terms without an analogue in previous works 
concerning operator forms for cos p and sin p, although these additional terms do not affect 
first-order asymptotic behaviour. 

Let us consider the coherent state 
1 

Qdq)  = n e x p [ $ ( Z 2  - lorI2)1exp[-~qZ +iZql 

a = R e ~  R > O ,  - i r < 0 < n  

(5.1) 

and set 

the-quantities R and 0 will keep this fixed significance from now on. 
Recall that the symbol G~ stands for the Wigner-Weyl transformation introduced at the 

end of the first section. We also recall the precise meaning of e*i' as a function in phase 
space 121: 

( p  f iq)/(p2 + qz)ll2 if p2  + q2 > o 
if p = q  = 0. (5.2) e*'P(p, q) = 

In terms of z = p + iq and r = IzI this can be written as 

z/r if r > 0 
i f r = O  

[e"](z) = 

and 

(5.34) 

(5.36) 

The brackets are meant to emphasize that ( z )  is an argument of the function and not 
multiplication by z. Note that 

[e*'"l(e'~z) = e*'p[e*'"](z). (5.4) 

(5.5) 

Then 
1 

Q ~ ) I ( ~ .  q) = ;e-lz-uI' z = p + i q  

which is easily verified. Shifting arguments z + z + or and then z --f e-'Oz, we find that 

(au, A(e*'")OP,) = - [e"'l(z +or)e-lzi* dA(z) 
r c  ' J  

= f. / [e*:"](ei8z + e''R)e-':l' dA(z) 
n c  

= ~ [ e * " ] ( z  + R)e-lzlz dA(z) 

= e*"(QR, A(e*'')QR). (5.6) 
Here and subsequently, we write dA(z) for the area element in phase space, written in 

terms of complex coordinates. Note that these are not line integrals in the sense of Cauchy. 
We can evaluate this in terms of modified Bessel functions of the first kind 
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Note that this agrees with the calculations of Freyberger and Schleich [21], cf equation (1 1). 
We are also able to determine the asymptotic form of this matrix element for large R: 

= x1/2 2R m e - R 2 u 1 d u  

=1--+0($) 1 R + m .  
4R2 (5.8) 

Thus we can write the expectation of A(e*y) in the coherent state 

and its asymptotic form: 

A(e*"p)@,) = [I - &]e*" + 0 ($) R + 00. (5.10) 

With these two formulae, we have obtained the first moments of A(e'P) and A(e+) in the 
coherent state @@, and their leading asymptotic forms. 

We now seek the asymptotic behaviour of the norm of A(e*'q) acting on the state OU, 
which we find via the Hermite functions. In [2] we determined that A(eiiV) were shift 
operators when acting on the Hermite basis, with 

A(e iq)L = L + I ~ + I  (5.1 la) 

and 

A(e-iq))h, = Zhn-1 (5.11b) 

where ho = 0 and 

(5.11c) 

and where s, is defined in equation (3.12). Using Stirling's formula we deduce that 

From the definition of O ( l / n z ) ,  it follows that there exists a bounded sequence 

SUP Ian1 < 00 
n 

such that 
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Using equation (2.6) to express @a in terms of Hermite functions, we have 

Hence there exists a positive constant A such that 
1 i R i  ~ A 

f - RZ R 4 .  
Thus 

l~A(ei')@a~~z = IIA(e'')@R112 = 1'+ 0 ( a 4 )  - R+CO. (5.12) 

Does a coherent state approximate an eigenvector of the phase in some sense? To 
answer this question we consider the asymptotic form of 

I llA(e'')@R1lz - 1) < -e-i 

ll[A(Gp) - e'@]@,11* = ~ ~ A ( ~ ' ) @ w ~ ~ z  - 2Re[e-"(OP,, A(e'')@.,) + 1 
= ~ ~ A ( ~ p ) @ ~ ~ ~ 2  - 2Re[(@p~, A(e'p)@~)] + 1 
= ]][A(eiq) - 1]@R112 

, I  - ,Rz+o(f)  -_  R-tco.  (5.13a) 

Re stands for the real part of a complex number; we indicate the imaginary part by Im. 
A similar calculation for the opposite phase yields 

Il[A(e-'") - e-ie]Qal12 = /l[A(e-'') - 1]@~112 

(5.136) 
I 

- - _  2RZ + 0 (+) R -t CO. 

(5.14a) 

(5.14b) 

which means that eV is an approximate eigenvalue of A(e") and e-i8 is an approximate 
eigenvalue of A(e-'v), with 

(@Re;,) : R > 0) 

providing a common family of approximating unit vectors. However, we already know 
that e'* (respectively e-") is not an eigenvalue of A(eip) (respectively A(e-'p)), so this 
observation is at best approximate [2]. 

By way of, comparison, we note that Freyberg and Schleich provide an interesting 
insight into the results of some laser experiments relating to phase. Their analysis places 
considerable importance on a quantity they call the dispersion, which is, essentially, the 
sum of the variances of A(cosrp) and A(sinq) in the state (in our notation). Their 
calculations are semiclassical, however, as they impose the condition that, in effect, ,~ 

A ( c o ~ p ) ~  + A(sinrp)' = I .  
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As we have noted above, this is not strictly appropriate in the full quantum mechanical 
context. 

With this in mind, let us calculate the asymptotic form of the analogous quantity, 

a(@) = var[A(cosp); e,] + var[A(sin(p); @,J (5.15~) 

S(0r )  = [A(COSV)~+ A(~inyl)~l%) - I(@,, A(eiv)0,)12. (5.15b) 
in the Wigner-Weyl picture. Evidently 

Now, in detail, 

A ( C O S ( ~ ) ~  + A(sin(p)' = -[A(Gr) + A(e-")I2 + -[A(e'v) - A(e-'V)]' 
1 1 

22 (2i)Z 
= f[A(e"), A(e-'V)]t 

= f(A(eiV), A(eiV)*], 

where the +-bracket indicates the anti-commutator. 

(Qn, [A(cos(p)' + A(~in(p)~l@,) = f(llA(eiV)@,l12 + IIA(e-"p)@u112) 
from which we deduce that 

Taking matrix elements, 

(5.16) 

S(Reie) = 6 ( R )  = - + 0 ( d 4 )  - R + m .  
2R2 (5.17) 

We may interpret this as saying that a fully quantum mechanical calulation (using the Weyl 
quantization of our proposed observable) gives the same first order asymptotic behaviour 
as do the calculations of Freyberger and Schleich [ZI], and which models the experimental 
results quite well. 

One reason why some workers may have made essentially semiclassical approximations 
typified by the above results is that it has often been assumed that the Wigner-Weyl 
transform of !Pa, in our terminology 

G K @  % l ( P ? q )  
provides a density function for large 01 against which phase space observables can he 
integrated to find their moments. Now it is of course true that L2 X ( p , q ) G I Z @  @,l(p,q)dpdq = (am, AGO%) (5.18~) 

for any observable X, but then 

(5.18b) 2 -  X(P, q)  G I 4  0 @;l(p, 4) dpdq = A(X2)@d s, 
which is not the same as 

1 2 ( X * X ) ( ~ , q ) G [ % 8  % l ( ~ . q ) d ~ d q  = W3'@,) (5.18~) 

in general. Using G[%O @,J as a 'probability density' to calculate the variance of a phase 
space function X does not correspond exactly to calculating the variance of the quanum 
mechanical observable A(X) in the state a-. 

Of course it might be expected that A(X2) and A(X)' are very close to each other 
in  certain circumstances, but when asymptotic behaviour is being investigated, such an 
assumption warrants extreme caution. Indeed, in~the next section, we shall show how just 
this sort of assumption leads to inaccuracies. 
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Moreover, it should be noted that, in general, Q[f@ f](p, q )  is not a positive function 
on phase space for f E S(R). Indeed, this only happens for Gaussian functions f such 
as (Hudson's theorem [22]). Thus, interpreting the Wigner-Weyl transform of @a as a 
probability distribution even when [a[ is large can be dangerous. 

6. Coherent states and the operators A(q) 

Moving on to consider the moments of the phase operator A(Q) with respect to coherent 
states, we begin by calculating that 

(0=, A((o)0,) = - 1 p(z)e-l'-'I'dA(z) = - p(e'ez)e-''-R1'dA(z). 

For simplicity we shall work with the case 0 < 8 < 71.  It is then clear that 

' S  (6.1) 

( 6 . 2 ~ )  

1 

n c  r c  

pO(e"z) = d p ,  q )  + 0 - 2n&-e(p,q)  
where the phase space function E,-@ is given by the rule [2] 

1 i f r > O a n d n - B < B < r  
0 otherwise. (6.26) E,-s(r cos ,8, r sin 6) = 

In this notation it follows that 

A(Q)@Q) = ( @ R , ~ A ( ~ P R )  + e  - ~ z ( Q R ,  A(&-E)@R). 
Since 

V ( P 9  -4) = - d P ,  9 )  

@ R ,  A (Q)@R)  = 0 

we have 

and so 

(@a, A(Q)@a)  -2Z(@Rr A(E,-O)QR) 

= 8 - 271 E,-e(z + R)e-''l* dA(z). 

The geometry of the problem is slightly different according to whether 0 is greater than 
or equal to n / 2  or less than x /2 ,  so let us define the function k : [O, n) + (0, I] by setting 

so that 

E,-E(z -I- R )  = 0 for all IzI < Rk(8) .  

Thus 

and so 

(6.3) 
The asymptotic behaviour of the expectation of A(p) in the state 0, can be read off from 
this: 

2 -k(%)'R' I(%,A(v)%) -81 6271  e 

(0=, A(q)Qa) = 8-t O(e-k(E)'R') R --f W. (6.4) 
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In order to calculate the second moment of A@) in the state @a, we need a more 

LZfl(x) = f ( x  -4 (6.5a) 
[JW,fl(x) = e'""f(x) (6.5b) 

for all f E S@) and a E R. We shall also employ the parity operator previously defined: 

[Rfl(X) = f ( - x ) .  ( 6 5 )  

sophisticated approach. We have found it convenient to define the operators 

With this notation, 
1 E(.?@ g)I(p, q) = ;eZ"(~2,7Q~f,g)  

[ G ( M z p l ~ R f  8 ~ ) I ( C ,  v) = e2i(cy-v'+%XV@ g ) J ( t  - p, v - 4). 

f , g  E SW. 
We can translate in phase space and write 

The point of doing this is that for any phase space functions X, Y which are sufficiently 
regular so that A(X), A ( Y )  are continuous linear operators from $(R) to .Lz(R), we can 
write 

[G(f@A(Y)g)l(p,q) = L /  r(t,s)e""y-"'[9(Rf@g)1(5. -p.v -q)dFdv (6 .64 

and so 

M X ) f ,  A(Y)g)  = .!. / x(p,q) 
n i l  

x ( [ Y ( ; .  1 7 ) e ~ " ~ - " ~ [ g ( ~ @ g ) l ( ~  --p,v--q)d5.dv 1 dpdq (6.66) 

for any f, g E S(R). We note that, viewed as a function on l7 x n, that is, R4, the 
integrand may not be Lebesgue integrable. However, the integral exists as an iterated 
Lebesgue integral. This means that everything is well defined and we may proceed, being 
careful not to invoke Fubini's theorem as a matter of course. 

Our first step is to consider the integrand of the inner integral with f and g equal to 
the coherent state 4*: with 

[~(m@ 4m)1(p, q) = le-i?2-y2-2iplmu+Zqmo. 
x 

we obtain 
1 - 1 -e2 i ( t~-v~)[g(~4 ,  @ q,,)j(c - p, -q) = ~ e - i ~ ~ ~ z - l w ~ ~ z + ~ ( z - ~ ) ~  H 
IT 

where in addition to setting z = p + iq we also set w = 5. + iv. 
In this notation, 

w ) )  dA(z) 

1 11A(X)@,112 = 7 /  1 x ( z  + ~ ) ( ~ X ( W + ( I ) e - ~ i ~ z - ~ w i ' + Z ~ ~ d A ( w )  dA(z) 
C 
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As we did before, we restrict the angle to the interval 0 < 0 < n. Then this last result 
applied to A@) leads us to the calculation 

IIA(p)@uI12 = Il[A(p) + e  - 2 ~ A ( E z - e ) l @ ~ I l ~  
= IlA(V)@R112 4- 0' +4aZIIA(E~-s)@~ll2 + ~ Q ( @ R ,  A(v)@R) 

4 j ? @ ( @ R ,  A(E,-B)@R) - ~ Z R ~ ( A ( P ) @ R ,  A(Ez-e)@R) 
= lih(V)@~il' + 0' +4irzIIA(E~-e)@~11z 

- 4 ~ 0 ( @ ~ ,  A(&-a)@R) -471 Re(A((o)@R, A(Er-s)@R). (6.8) 

(08 ,  A(E,-S)@R) = O(e-K(e)2Rz) R --f CO. (6.9) 
Therefore, to determine the asymptotic behaviour of llA(rp)@,l12 we must discover the 
asymptotic form of IlA((p)@p,II and IIA(En-~)@~II. An asymptotic bound on the cross term 
(A(V) )@~,  A ( E Z q ) @ ~ )  will then follow from the Cauchy-Schwarz inequality. 

We have already shown that 

For every integer n > 0 we define the function 

(6.10) 

We recognize the expression when n = 0 as 
(6.11) 

whose asymptotic form we know. To find the asymptotic form of llA(EZ-e)@~ll we shall 
have to consider a weighted sum of the U,, over n, so we need estimates of \Un\. 

Uo(R, 0) = ( @ R .  A(&-e)@R) 

For any r z k(6')R we can find functions /L and v satisfying 
0 < , / ~ ( r , 0 )  < U ( I ; @ )  c r 

such that 
1 
0 otherwise. . 

if n - v(r, 6') c ,4 c n - p(r, 6') 
E,-e(rcosp+R,rsin,4)= 

.Then 

using integration by parts. 
The sum we need is 

(6.12) 
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Using Fubini's theorem we may transform the integral as follows: 

The first term may be estimated as well: 

2 <- k(Q2R2' 
Combining these, 

(6.13) 

from which we deduce that the series converges and that it has the asymptotic expression 

(6.14) 

The series we have just examined comes from the power series expansion of ea* in 

(6.15~) 

Convergence is assured and we may integrate both sides and interchange the order of sum 
and integral to get: 

Thus it follows that 

(6.156) 

(6.16) 
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The approximations we have made are by no means the sharpest. It may in fact be true, 
for example, that 

I I A ( E , - ~ ) ~ R I I ~  = o (i) R .+ w. 

However, more detailed calculations below will give a more accurate assessment of the 
asymptotic behaviour of IIA(P)ORI~~, and so it seems that to first order, a sharper result for 
IlA(Ez-e)@~l[2 is probably not necessary. 

It is to the asymptotic behaviour of I I A ( ~ ) C J ~ [ ~ ~  that we  now turn. We begin by 
evaluating a singular integral. Let log(1 + z) be the branch of the logarithm defined on 
C \ (-m, -11. Define 

L ( r )  = Pv z”-’ log(1 + z) dz r > 0, n E Z. (6.17) Lr 
Standard complex integration methods yield 

( 0  if n )O and0 < r c 1 
2ni( - 1)” 

I n  
i f n  < -1 a n d O < r  < 1 

2ni(-l)” 
( r n - I )  i f n > I a n d r > l  

M r )  = I n  
2xi log r if n = O  and r > 1 

i f n  < -1 andr  > 1 

We must now consider integrals formed as U, is, but with log(1 + z) replacing E,+. 
We need two sequences of functions, to deal with complex conjugation. Thus we define 

B,,(R) = s, log(1 + z)e-Rz’r12zn dA(z) (6.180) 

and 

log(1 + z)e-Rilz‘iZn dA(z) (6.18b) 

for integers n 2 0. 
Utilizing the properties of the logarithm, 

(6.19a) 

and 
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where 

are the incomplete gamma functions of Legendre; a is restricted by Re a > 0 in y(a, x ) .  

for A(p) that {Un} did for L - 0 :  

These two sequences combine to make up the sequence [V,J which plays the same role 

and so 
l o  i f n = O  

As with Un we shall need a certain infinite series in the V,, and we now consider upper 
and lower bounds for that part which comes from the incomplete gamma function. Then, 
using Fubini's theorem as necessary, 
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1 R' > z l  xe-*& 

1 
2R2 

1 
2- 4RZ 

-- - [I - ( R ~  + ~ ) e - ~ ' ]  

if R 2. 
Combining the two esiimates, 

1 1 2" 4 
;R-"?(n, R2)' 6 - 

R2 4 ~ 2  < 4 n>1 

if R 2, and so certainly 

The series in which the other incomplete gamma 

R + W. 

iction appears is treate 

(6.22) 

(6.23) 

,imilarly 

(xy)-'(eaY - l)e-x2-P dx dy 
= SRmSRm 

With one more change of variable, 
2" 
n. 

- 2 lm t-' log( 1 + t)e-R2f' dt - +El (R2)' " C r ( $ , R )  - (6.24) 
n>l 

and so 

By El  we mean the function 
m 

El (x) = t-'e-'dt x > 0 

related to the exponential integral. 
We conclude two things from this inequality. First, the series 

(6.25) 

(6.26) 

converges, and second, by using the method of Laplace, one of the standard techniques in 
the theory of asymptotic expansions, we find that 

(6.27) 

We are using the standard notation for asymptotic equivalence here. 
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As we did for U,, we use a power series expansion to obtain 

Hence 

As before, the calculation is justified by the convergence of the final series. From this it 
follows that the asymptotic equivalence of the matrix element in question is 

(6.28) 

Combining the two parts of the calculation, we now see that 

I I A ( ~ ) Q , I I = ~ ~ + o ( ' )  R - + W  (6.29) 

and so 

(6.30) 

Looking back at our assumptions, we have shown this only for 0 < 0 < x. However, 
the reflected case -R < e 6 0 can be done in entirely analogous fashion. Doing so-we 
omit the calculation as being as long as the one we have presented, and of no independent 
interest-we learn that 8 is an approximate eigenvalue of A(q) for any -x < 8 < x, with 
IQR+ : R > 0 an approximating sequence of unit vectors. This implies that 

[-n, 81 C sPec[A(P)l. (6.31) 
By elementary spectral theory, this implies that 

7~ < IIA(vo)II. 
We already know from [Z] that I]A(q)]l 6 3x/2, so we can now say that 

< IlA(v)ll 4 3 ~ / 2 .  (6.32) 
This sharpens considerably the results we had in [2], and increases our belief in the 
conjecture we stated there: that the spectrum of A@) is the continuous interval [-R, RI. 
A proof that the norm of A@) was equal to x would now prove this conjecture. 

The particular result that IlA(p)Q.& is asymptotically equivalent to x'/'/R is 
somewhat surprising. in view of what is expected from the literature. Conventional wisdom 
leads us to expect that the variance of A@) in the state QR should behave like (2RZ)-' 
for large R, and we see this is not the case. However, the heuristic justification for the 
expected result relies on treating the Wigner-Weyl transform 

(6.33) ' - ( P - R ) ~ - $  WR(P. 4) = @)R)I(p*q) = ;e 



Asymptotics for the Weyl quantized phase 6805 

as a probability density function in the phase plane, and then calculating the variance of 
9 classically using this distribution. However, as has been mentioned before, this is not 
correct. Certainly 

( ~ R , A ( V ) O R )  = rp(P,q)WR(p,q)dPdq = o  (6.34) J* 
but 

(QR. A(P)'QR) # A  P(P,q)2WR(P.q)dpdq. (6.35) 

(OR. A@)'QR) = S ~ [ P * P I ( P . ~ ) W R ( P . ~ ) ~ ~ ~ ~  (6.36) 

where 'p * 'p is the Moyal product of 'p with itself. 
While it is tempting to say that p * p is close to 'p', and so use 'p' to give approximate 

results, there are two problems connected with this. 
Firstly, the expansion formulae which show the Moyal product X * Y of two phase 

space functions as approximated by the pointwise product XY require that X and Y have 
good differentiability properties, which 'p certainly does not possess: we do not have any 
useful knowledge of the relation between 'p * p and 'p2. 

Secondly, even if we knew that we could approximate p * p by q', the error in this 
approximation, even if small, may still have asignificant effect in the asymptotic calculations 
which would ensue. 

Moreover, as has been shown above, much of the evidence supporting the 1 f2R' 
asymptotic behaviour seems to be more~properly directed towards the calculation of the 
variances of A(SP) and A(e-'P) in coherent states; and in these cases our formalism is 
consistent with this reasoning and with the experimental evidence. It can be argued that, to 
date, experiments have not been performed which directly measure the angle p, but rather 
measure the operators corresponding to cos 'p and sin 'p. Evidently more remains t6 be done, 
both in calculating properties of A(q)  and in designing experiments to measure the angle 
directly. It might be, of course, that such experiments are not possible in the near future. 
If so, the only current possibility of distinguishing between vtxious theoretical observables 
might be by deduction from more refined experimental results of the sorts that are now 
done. 

It should also be noted that the Barnett and Pegg approach seems to yields an asymptotic 
behaviour of 1/2RZ for the variance of their phase operator candidates. It will be argued in 
our companion paper [19] that this result places too little weight on the high photon number 
states. Our argument will be that X,y represents an apparatus to measure the phase operator 
in an approximate sense. The -weighting of the high photon number states is part of the 
limitations of the measurement apparatus. That a different result from ours then obtains is 
therefore not surprising, particularly in view of the fact that making various approximations 
to our formula also gives this alternate result. 

For example, if the series for [[A('p)@~(l is truncated, we come to consider the function 

All one can say is that 

(6.37~) 

for  any^ N > 0. From our work above we may deduce that this has the asymptotic behaviour 

R + W .  (6.376) 
1 

O N ( R )  - @ 
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Alternatively, if we threw away the terms in V. involving r($, Rz), we would have 
the result 

( 6 . 3 8 ~ )  

which we obtained above. While the exact asymptotic of this series is not clear, it is true 
that 

1 2” 1 - I R - ” y ( n ,  k2R2)’ - - R + C G  
4 “>I n. 2R2 (6.38b) 

for any 0 < k e 1. The point of this is that if we define a cut-off angle function by 

(6.390) 

(6.39b) 

There is no obvious physical justification for terminating the infinite series-for example, 
evaluating ON does not correspond to truncating OR to the first N + 1 terms in its expansion 
in terms of the Hermite functions--or for restricting the domain of definition of A@) in the 
above way. It seems to us that there is a great deal of heuristic argument in the literature 
which is based on approximations such as these, and the corresponding statements about 
what sort of asymptotic behaviour ought to be expected are somewhat suspect. When 
the experimental situation is clearer, we may have a better idea of what really should be 
expected. Moreover, it may be that forcing through the calculational complexities of a 
sound theory will result in predicting new phenomena which, after all, would be much 
more interesting. 
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